smart way المدير
mms : اوسمه :
عدد الرسائل : 4366 العمر : 34 الموقع : https://demo.ahlamontada.net/forum.htm العمل/الترفيه : معيد بكليه العلوم جامعه الاسكندريه المزاج : nice جنسيتك : آخر.... السٌّمعَة : 25 تاريخ التسجيل : 22/03/2009
| موضوع: Normal distribution الجمعة نوفمبر 19, 2010 7:51 pm | |
| b]Normal distributionProbability density function[/b] The continuous probability density function of the normal distribution is the Gaussian functionتكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.where σ > 0 is the standard deviation, the real parameter μ is the expected value, andis the density function of the "standard" normal distribution: i.e., the normal distribution with μ = 0 and σ = 1. The integral of over the real line is equal to one as shown in the Gaussian integral article.As a Gaussian function with the denominator of the exponent equal to 2, the standard normal density function is an eigenfunction of the Fourier transform.Cumulative distribution functionThe cumulative distribution function (cdf) of a probability distribution, evaluated at a number (lower-case) x, is the probability of the event that a random variable (capital) X with that distribution is less than or equal to x. The cumulative distribution function of the normal distribution is expressed in terms of the density function as follows:تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.The standard normal cdf is just the general cdf evaluated with μ = 0 and σ = 1:تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.The standard normal cdf can be expressed in terms of a special function called the error function, asand the cdf itself can hence be expressed asGenerating functions[edit] Moment generating functionThe moment generating function is defined as the expected value of exp(tX). For a normal distribution, the moment generating function isتكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.as can be seen by completing the square in the exponent.[edit] Cumulant generating functionThe cumulant generating function is the logarithm of the moment generating function: g(t) = μt + σ²t²/2. Since this is a quadratic polynomial in t, only the first two cumulants are nonzero.[edit] Characteristic functionThe characteristic function is defined as the expected value of exp(itX), where i is the imaginary unit. So the characteristic function is obtained by replacing t with it in the moment-generating function.For a normal distribution, the characteristic function isتكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.PropertiesSome properties of the normal distribution:
- If and a and b are real numbers, then (see expected value and variance).
- If and are independent normal random variables, then:
- Their sum is normally distributed with (proof).
Interestingly, the converse holds: if two independent random variables have a normally-distributed sum, then they must be normal themselves — this is known as Cramér's theorem.
- Their difference is normally distributed with .
- If the variances of X and Y are equal, then U and V are independent of each other.
- The Kullback-Leibler divergence,
تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
If and are independent normal random variables, then:
- Their product XY follows a distribution with density p given by
where K0 is a modified Bessel function of the second kind.
- Their ratio follows a Cauchy distribution with . Thus the Cauchy distribution is a special kind of ratio distribution.
If are independent standard normal variables, then has a chi-square distribution with n degrees of freedom.If are independent standard normal variables, then the sample mean and sample variance are independent. This property characterizes normal distributions (and helps to explain why the F-test is non-robust with respect to non-normality!)
[edit] Standardizing normal random variables
As a consequence of Property 1, it is possible to relate all normal random variables to the standard normal. If X ~ N(μ,σ2), then
is a standard normal random variable: Z ~ N(0,1). An important consequence is that the cdf of a general normal distribution is therefore
تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Conversely, if Z is a standard normal distribution, Z ~ N(0,1), then X = σZ + μ is a normal random variable with mean μ and variance σ2. The standard normal distribution has been tabulated (usually in the form of value of the cumulative distribution function Φ), and the other normal distributions are the simple transformations, as described above, of the standard one. Therefore, one can use tabulated values of the cdf of the standard normal distribution to find values of the cdf of a general normal distribution.Moments
The first few moments of the normal distribution are: Number Raw moment Central moment Cumulant|
0 | 1 | 1 |
| 1 | μ | 0 | μ | 2 | μ2 + σ2 | σ2 | σ2 | 3 | μ3 + 3μσ2 | 0 | 0 | 4 | μ4 + 6μ2σ2 + 3σ4 | 3σ4 | 0 | 5 | μ5 + 10μ3σ2 + 15μσ4 | 0 | 0 | 6 | μ6 + 15μ4σ2 + 45μ2σ4 + 15σ6 | 15σ6 | 0 | 7 | μ7 + 21μ5σ2 + 105μ3σ4 + 105μσ6 | 0 | 0 | 8 | μ8 + 28μ6σ2 + 210μ4σ4 + 420μ2σ6 + 105σ8 | 105σ8 | 0 | All cumulants of the normal distribution beyond the second are zero. Higher central moments (of order 2k with μ = 0) are given by the formula
| |
|
Princess Tamina كيميائى
mms : عدد الرسائل : 324 العمر : 32 جنسيتك : مصر السٌّمعَة : 0 تاريخ التسجيل : 31/08/2010
| موضوع: رد: Normal distribution الجمعة نوفمبر 19, 2010 8:24 pm | |
| | |
|