منتدى كلية العلوم بدمنهور
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

منتدى كلية العلوم بدمنهور


 
الرئيسيةبوابه جديدةأحدث الصورالتسجيلدخول

 

 Normal distribution

اذهب الى الأسفل 
2 مشترك
كاتب الموضوعرسالة
smart way
المدير
المدير
smart way


mms mms : mms
اوسمه : سفير المنتدى

ذكر
عدد الرسائل : 4366
العمر : 34
الموقع : https://demo.ahlamontada.net/forum.htm
العمل/الترفيه : معيد بكليه العلوم جامعه الاسكندريه
المزاج : nice
جنسيتك : آخر....
السٌّمعَة : 25
تاريخ التسجيل : 22/03/2009

Normal distribution Empty
مُساهمةموضوع: Normal distribution   Normal distribution Emptyالجمعة نوفمبر 19, 2010 7:51 pm

b]Normal distribution

Probability density function[/b] Normal distribution 260px-Normal_Distribution_PDF.svg

The continuous probability density function of the normal distribution is the Gaussian function

تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Normal distribution E8cf730ec1a7587ee84403dbc1c64008
where σ > 0 is the standard deviation, the real parameter μ is the expected value, and
Normal distribution 4a13599010e5b2223d470324aded2980
is the density function of the "standard" normal distribution: i.e., the normal distribution with μ = 0 and σ = 1. The integral of Normal distribution Dc9632c51d1d882c947182e4bae14b72 over the real line is equal to one as shown in the Gaussian integral article.
As a Gaussian function with the denominator of the exponent equal to 2, the standard normal density function Normal distribution 6270e0b9f032707ae0de870f76533e6f is an eigenfunction of the Fourier transform.Cumulative distribution function

Normal distribution 360px-Normal_Distribution_CDF.svg

The cumulative distribution function (cdf) of a probability distribution, evaluated at a number (lower-case) x, is the probability of the event that a random variable (capital) X with that distribution is less than or equal to x. The cumulative distribution function of the normal distribution is expressed in terms of the density function as follows:

تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Normal distribution 0d6d29564649c2b89454b26db0fa4e06
The standard normal cdf is just the general cdf evaluated with μ = 0 and σ = 1:

تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Normal distribution Ee6afc55216c30d88141b7036ac08fc1
The standard normal cdf can be expressed in terms of a special function called the error function, as
Normal distribution 003dabb870f6a1fc0521a85000ea8090
and the cdf itself can hence be expressed as
Normal distribution 3537f96b6dfa850f2e6fcb765a03c28cGenerating functions



[edit] Moment generating function


The moment generating function is defined as the expected value of exp(tX). For a normal distribution, the moment generating function is

تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Normal distribution Ec3e32bd3a987126f3c3b40e239fa768
as can be seen by completing the square in the exponent.

[edit] Cumulant generating function


The cumulant generating function is the logarithm of the moment generating function: g(t) = μt + σ²t²/2. Since this is a quadratic polynomial in t, only the first two cumulants are nonzero.

[edit] Characteristic function


The characteristic function is defined as the expected value of exp(itX), where i is the imaginary unit. So the characteristic function is obtained by replacing t with it in the moment-generating function.
For a normal distribution, the characteristic function is

تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
Normal distribution 37e8462c5cc0193558226a94aa4f2a03Properties


Some properties of the normal distribution:

  1. If Normal distribution 744888b68a64964aacef3bcd8d6777e7 and a and b are real numbers, then Normal distribution 701cfc64a709902a1270c47864119652 (see expected value and variance).
  2. If Normal distribution Eac9f1d639c15276cf22d85ff11a7b6a and Normal distribution 2e26b49dbd44bb0b4650744a65f83097 are independent normal random variables, then:


    • Their sum is normally distributed with Normal distribution 81fcbdfdcfb20f9af35db82829da43b0 (proof).
      Interestingly, the converse holds: if two independent random variables
      have a normally-distributed sum, then they must be normal themselves —
      this is known as Cramér's theorem.

    • Their difference is normally distributed with Normal distribution 8b22e1778fd0e4548eda237bad71aa44.
    • If the variances of X and Y are equal, then U and V are independent of each other.
    • The Kullback-Leibler divergence,
      تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
      Normal distribution 3343df5d9bc94fa8ced3d0f921566c57




  • If Normal distribution 1a368150e2171639da10166086a11bd3 and Normal distribution 9d49cf31b33111492ae2884c760231e9 are independent normal random variables, then:


    • Their product XY follows a distribution with density p given by
      Normal distribution B009e9a11285d981783c4467debe66e0 where K0 is a modified Bessel function of the second kind.
    • Their ratio follows a Cauchy distribution with Normal distribution 1fc3faa96303a0341027aacb3a8e5c5d. Thus the Cauchy distribution is a special kind of ratio distribution.


  • If Normal distribution E8eacc087b64e56391a3b8ddf4216d77 are independent standard normal variables, then Normal distribution 4b82e42397459f7359433c6673601109 has a chi-square distribution with n degrees of freedom.
  • If Normal distribution E8eacc087b64e56391a3b8ddf4216d77 are independent standard normal variables, then the sample mean Normal distribution F8ee4c5b552319c9e1183d3d89355316 and sample varianceNormal distribution B0a33006cefd0b7d37794e42ec213a35 are independent. This property characterizes normal distributions (and helps to explain why the F-test is non-robust with respect to non-normality!)


    [edit] Standardizing normal random variables


    As a consequence of Property 1, it is possible to relate all normal random variables to the standard normal.
    If X ~ N(μ,σ2), then
    Normal distribution F7aa6c4c6f1dc137bb57a719ca20edb0
    is a standard normal random variable: Z ~ N(0,1). An important consequence is that the cdf of a general normal distribution is therefore

    تكبير الصورةتصغير الصورة تم تعديل ابعاد هذه الصورة. انقر هنا لمعاينتها بأبعادها الأصلية.
    Normal distribution 7b0e968a9422be89bc5054772359a82a

    Conversely, if Z is a standard normal distribution, Z ~ N(0,1), then
    X = σZ + μ
    is a normal random variable with mean μ and variance σ2.
    The standard normal distribution has been tabulated (usually in the
    form of value of the cumulative distribution function Φ), and the other
    normal distributions are the simple transformations, as described
    above, of the standard one. Therefore, one can use tabulated values of
    the cdf of the standard normal distribution to find values of the cdf
    of a general normal distribution.
    Moments


    The first few moments of the normal distribution are:
    Number Raw moment Central moment Cumulant
    011
    1μ0μ
    2μ2 + σ2σ2σ2
    3μ3 + 3μσ200
    4μ4 + 6μ2σ2 + 3σ440
    5μ5 + 10μ3σ2 + 15μσ400
    6μ6 + 15μ4σ2 + 45μ2σ4 + 15σ615σ60
    7μ7 + 21μ5σ2 + 105μ3σ4 + 105μσ600
    8μ8 + 28μ6σ2 + 210μ4σ4 + 420μ2σ6 + 105σ8105σ80
    All cumulants of the normal distribution beyond the second are zero.
    Higher central moments (of order 2k with μ = 0) are given by the formula
    Normal distribution 9ee2fb62550523bac223697b7ad104b0
  • الرجوع الى أعلى الصفحة اذهب الى الأسفل
    http://smart.way14@yahoo.com
    Princess Tamina
    كيميائى
    كيميائى
    Princess Tamina


    mms mms : mms
    انثى
    عدد الرسائل : 324
    العمر : 32
    جنسيتك : مصر
    السٌّمعَة : 0
    تاريخ التسجيل : 31/08/2010

    Normal distribution Empty
    مُساهمةموضوع: رد: Normal distribution   Normal distribution Emptyالجمعة نوفمبر 19, 2010 8:24 pm

    بارك الله فيك
    الرجوع الى أعلى الصفحة اذهب الى الأسفل
    https://demo.ahlamontada.net
     
    Normal distribution
    الرجوع الى أعلى الصفحة 
    صفحة 1 من اصل 1

    صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
    منتدى كلية العلوم بدمنهور :: اخبار واقسام الكليه News and departments of the faculty :: علم الرياضيات-
    انتقل الى: